?> Wie kann eine neue Schicht mit einer oder mehreren... - Aide
QUESTION / RÉPONSE

Wie kann eine neue Schicht mit einer oder mehreren vorherigen Schichten verbunden werden?

0 consultations

Réponse

Verwenden Sie den Parameter `srcLayers`, um die Namen der Quellschichten anzugeben, die als Eingabe für die neue Schicht dienen sollen. Dies ermöglicht den Aufbau komplexer Netzwerkarchitekturen.
Action technique liée

Voir la documentation de addLayer

Voir l'Action

Voir aussi

augmentImages
image

The `augmentImages` action is a powerful tool within the Image action set for data augmentation in computer vision tasks. It works by taking an input table of images and generating new, modified images. These transformations can include geometric changes like flipping, rotating, and cropping (creating patches), as well as color and pixel-level mutations such as color jittering, sharpening, lightening, or darkening. This process artificially expands the training dataset, which helps in building more robust and generalized deep learning models by exposing them to a wider variety of image appearances.

augmentImages
image

L'action `augmentImages` est une fonctionnalité puissante du traitement d'images dans SAS Viya. Elle permet de créer des versions augmentées d'un jeu d'images en générant des 'patches' (imagettes) et en leur appliquant diverses mutations. Cette technique est fondamentale en apprentissage profond (deep learning) pour enrichir artificiellement les jeux de données, ce qui aide à améliorer la robustesse et la performance des modèles de vision par ordinateur en les exposant à une plus grande variété de scénarios (changements de luminosité, d'angle, de couleur, etc.).

addLayer
deepLearn

L'action `addLayer` est une composante fondamentale de la construction de modèles de deep learning dans SAS Viya. Elle permet d'ajouter séquentiellement une nouvelle couche (layer) à une architecture de réseau neuronal existante. Chaque couche ajoute une transformation spécifique aux données qui la traversent, permettant au modèle d'apprendre des représentations de plus en plus complexes. Cette action est utilisée de manière itérative pour construire le modèle couche par couche, de la couche d'entrée (Input) à la couche de sortie (Output), en passant par diverses couches cachées (convolution, pooling, récurrentes, etc.).