?>
Voir la documentation de annScore
L'action `annCode` génère un code SAS DATA step à partir d'un modèle de réseau de neurones artificiels entraîné. Ce code peut ensuite être utilisé pour scorer de nouvelles données, c'est-à-dire pour appliquer le modèle et obtenir des prédictions. C'est une étape cruciale pour déployer un modèle en production ou pour l'intégrer dans d'autres processus SAS.
Die Aktion `neuralNet.annTrain` ist ein leistungsstarkes Werkzeug innerhalb von SAS Viya, das zum Trainieren künstlicher neuronaler Netzwerke (KNN) verwendet wird. Sie ermöglicht es Benutzern, verschiedene Architekturen wie Mehrschicht-Perzeptrone (MLP), verallgemeinerte lineare Modelle (GLIM) und direkte Architekturen zu erstellen und zu optimieren. Diese Aktion ist von grundlegender Bedeutung für Aufgaben des überwachten Lernens, einschließlich Klassifizierung und Regression, und unterstützt auch das unüberwachte Lernen durch Autoencoding zur Dimensionsreduktion. Sie bietet eine breite Palette von anpassbaren Parametern, einschließlich Aktivierungsfunktionen, Optimierungsalgorithmen (z. B. L-BFGS, SGD), Regularisierungstechniken und Methoden zur Behandlung fehlender Werte, was eine feinkörnige Kontrolle über den Trainingsprozess ermöglicht.
The annCode action generates SAS DATA step scoring code from a trained artificial neural network model. This allows for the deployment of the model outside of the CAS environment, enabling scoring of new data in traditional SAS environments. The generated code can be saved to a CAS table for further use.