?> What does the 'code' parameter do in the annCode a... - Aide
QUESTION / RÉPONSE

What does the 'code' parameter do in the annCode action?

1 consultations

Réponse

The 'code' parameter is used to request the generation of the SAS score code and to specify output options for that code, such as the output CAS table name and caslib.
Action technique liée

Voir la documentation de annCode

Voir l'Action
Thématiques

Voir aussi

annCode
neuralNet

La acción annCode genera código de puntuación del DATA step de SAS a partir de un modelo de red neuronal artificial entrenado previamente con la acción annTrain. Este código puede ser utilizado para puntuar nuevos datos en entornos SAS tradicionales, permitiendo la implementación del modelo fuera del entorno de CAS.

annTrain
neuralNet

Die Aktion `neuralNet.annTrain` ist ein leistungsstarkes Werkzeug innerhalb von SAS Viya, das zum Trainieren künstlicher neuronaler Netzwerke (KNN) verwendet wird. Sie ermöglicht es Benutzern, verschiedene Architekturen wie Mehrschicht-Perzeptrone (MLP), verallgemeinerte lineare Modelle (GLIM) und direkte Architekturen zu erstellen und zu optimieren. Diese Aktion ist von grundlegender Bedeutung für Aufgaben des überwachten Lernens, einschließlich Klassifizierung und Regression, und unterstützt auch das unüberwachte Lernen durch Autoencoding zur Dimensionsreduktion. Sie bietet eine breite Palette von anpassbaren Parametern, einschließlich Aktivierungsfunktionen, Optimierungsalgorithmen (z. B. L-BFGS, SGD), Regularisierungstechniken und Methoden zur Behandlung fehlender Werte, was eine feinkörnige Kontrolle über den Trainingsprozess ermöglicht.

annScore
neuralNet

The `annScore` action scores a data table using a pre-trained artificial neural network model. This is a crucial step after training a model with `annTrain`, allowing you to apply the learned patterns to new data to make predictions. The action can generate various outputs, including predicted values, probabilities for classification tasks, and even the values of hidden layer nodes, which can be useful for feature engineering or model interpretation.