?> What are the required input tables for the `annSco... - Aide
QUESTION / RÉPONSE

What are the required input tables for the `annScore` action?

2 consultations

Réponse

The action requires two input tables: `modelTable`, which contains the trained artificial neural network model, and `table`, which is the data table to be scored.
Action technique liée

Voir la documentation de annScore

Voir l'Action
Thématiques

Voir aussi

annTrain
neuralNet

L'action `annTrain` du jeu d'actions `neuralNet` est un outil puissant pour entraîner des réseaux de neurones artificiels (ANN) dans SAS Viya. Elle permet de construire et d'optimiser des modèles prédictifs pour des tâches de classification et de régression. Cette action supporte diverses architectures, y compris les perceptrons multicouches (MLP) et les modèles linéaires généralisés (GLIM), offrant une flexibilité pour modéliser des relations complexes dans les données. Elle intègre des fonctionnalités avancées telles que la régularisation, le dropout, et plusieurs algorithmes d'optimisation (SGD, L-BFGS, ADAM) pour améliorer la performance et éviter le surajustement. L'action peut également générer du code de scoring SAS pour déployer facilement le modèle entraîné.

annScore
neuralNet

La acción `annScore` del conjunto de acciones `neuralNet` se utiliza para puntuar datos con un modelo de red neuronal artificial previamente entrenado. Esta acción toma un modelo entrenado (desde una tabla CAS) y una tabla de datos de entrada, y genera una tabla de salida con las predicciones. Es una herramienta fundamental en el ciclo de vida del machine learning para aplicar modelos a nuevos datos y evaluar su rendimiento o para la implementación en producción.

annScore
neuralNet

L'action `annScore` est utilisée pour évaluer (scorer) une table de données en utilisant un modèle de réseau de neurones artificiels préalablement entraîné. Elle applique le modèle stocké dans une table de modèle sur une nouvelle table de données pour générer des prédictions. Cette action est une étape cruciale dans le cycle de vie du machine learning, permettant de déployer un modèle pour faire des inférences sur de nouvelles données.