?>
Voir la documentation de annTrain
Erzeugt DATA-Step-Scoring-Code aus einem künstlichen neuronalen Netzwerkmodell. Diese Aktion ist entscheidend für die Operationalisierung von Modellen, da sie es ermöglicht, das trainierte Modell in eine portable und wiederverwendbare Form zu konvertieren, die in verschiedenen SAS-Umgebungen zur Bewertung neuer Daten ohne die Notwendigkeit der CAS-Umgebung ausgeführt werden kann.
Die Aktion `neuralNet.annTrain` ist ein leistungsstarkes Werkzeug innerhalb von SAS Viya, das zum Trainieren künstlicher neuronaler Netzwerke (KNN) verwendet wird. Sie ermöglicht es Benutzern, verschiedene Architekturen wie Mehrschicht-Perzeptrone (MLP), verallgemeinerte lineare Modelle (GLIM) und direkte Architekturen zu erstellen und zu optimieren. Diese Aktion ist von grundlegender Bedeutung für Aufgaben des überwachten Lernens, einschließlich Klassifizierung und Regression, und unterstützt auch das unüberwachte Lernen durch Autoencoding zur Dimensionsreduktion. Sie bietet eine breite Palette von anpassbaren Parametern, einschließlich Aktivierungsfunktionen, Optimierungsalgorithmen (z. B. L-BFGS, SGD), Regularisierungstechniken und Methoden zur Behandlung fehlender Werte, was eine feinkörnige Kontrolle über den Trainingsprozess ermöglicht.
L'action `annScore` est utilisée pour évaluer (scorer) une table de données en utilisant un modèle de réseau de neurones artificiels préalablement entraîné. Elle applique le modèle stocké dans une table de modèle sur une nouvelle table de données pour générer des prédictions. Cette action est une étape cruciale dans le cycle de vie du machine learning, permettant de déployer un modèle pour faire des inférences sur de nouvelles données.