?> How does the annTrain action handle missing values... - Aide
QUESTION / RÉPONSE

How does the annTrain action handle missing values in the training data?

3 consultations

Réponse

You can control missing value imputation using the 'missing' parameter for input variables and 'targetMissing' for the target variable. Options include 'MEAN', 'MAX', or 'MIN' to replace missing values with the mean, maximum, or minimum value of the variable. If set to 'NONE' (the default for interval variables), observations with missing values are ignored. For nominal variables, a new category is created for missing values by default.
Action technique liée

Voir la documentation de annTrain

Voir l'Action
Thématiques

Voir aussi

annScore
neuralNet

La acción `annScore` del conjunto de acciones `neuralNet` se utiliza para puntuar datos con un modelo de red neuronal artificial previamente entrenado. Esta acción toma un modelo entrenado (desde una tabla CAS) y una tabla de datos de entrada, y genera una tabla de salida con las predicciones. Es una herramienta fundamental en el ciclo de vida del machine learning para aplicar modelos a nuevos datos y evaluar su rendimiento o para la implementación en producción.

annCode
neuralNet

The annCode action generates SAS DATA step scoring code from a trained artificial neural network model. This allows for the deployment of the model outside of the CAS environment, enabling scoring of new data in traditional SAS environments. The generated code can be saved to a CAS table for further use.

annTrain
neuralNet

Die Aktion `neuralNet.annTrain` ist ein leistungsstarkes Werkzeug innerhalb von SAS Viya, das zum Trainieren künstlicher neuronaler Netzwerke (KNN) verwendet wird. Sie ermöglicht es Benutzern, verschiedene Architekturen wie Mehrschicht-Perzeptrone (MLP), verallgemeinerte lineare Modelle (GLIM) und direkte Architekturen zu erstellen und zu optimieren. Diese Aktion ist von grundlegender Bedeutung für Aufgaben des überwachten Lernens, einschließlich Klassifizierung und Regression, und unterstützt auch das unüberwachte Lernen durch Autoencoding zur Dimensionsreduktion. Sie bietet eine breite Palette von anpassbaren Parametern, einschließlich Aktivierungsfunktionen, Optimierungsalgorithmen (z. B. L-BFGS, SGD), Regularisierungstechniken und Methoden zur Behandlung fehlender Werte, was eine feinkörnige Kontrolle über den Trainingsprozess ermöglicht.