?> What does the 'pctlDef' parameter control?... - Aide
QUESTION / RÉPONSE

What does the 'pctlDef' parameter control?

3 consultations

Réponse

The 'pctlDef' parameter specifies one of five definitions for computing quantile statistics, as detailed in the UNIVARIATE procedure documentation. The default value is 6, which corresponds to an iterative process.
Action technique liée

Voir la documentation de boxPlot

Voir l'Action
Thématiques

Voir aussi

assess
percentile

La acción `assess` del conjunto de acciones `percentile` se utiliza para evaluar y comparar el rendimiento de modelos predictivos. Es especialmente útil para modelos de clasificación, generando métricas como la curva ROC, la tabla de elevación (lift chart) y estadísticas de ajuste para determinar la precisión y eficacia del modelo.

boxPlot
percentile

Die Aktion `boxPlot` im `percentile`-Aktionssatz ist ein leistungsstarkes Werkzeug zur Durchführung einer robusten univariaten Analyse. Sie berechnet wesentliche deskriptive Statistiken, die für die Erstellung von Boxplots erforderlich sind, einschließlich Quantilen (wie dem Median und den Quartilen), den oberen und unteren Whiskers zur Identifizierung der Datenvariabilität sowie der Erkennung von Ausreißern. Diese Aktion ist besonders nützlich für die explorative Datenanalyse, um die Verteilung, Zentralität und Streuung numerischer Variablen schnell zu visualisieren und zu verstehen, oft gruppiert nach kategorialen Variablen.

assess
percentile

L'action `assess` du jeu d'actions `percentile` est un outil puissant pour évaluer et comparer les performances de modèles prédictifs. Elle est particulièrement utile dans les scénarios de classification binaire et de régression. Pour les modèles de classification, elle calcule des statistiques d'ajustement, génère des courbes ROC (Receiver Operating Characteristic) et des courbes de lift, qui sont essentielles pour comprendre la capacité du modèle à discriminer les classes. Pour les modèles de régression, elle fournit des métriques d'erreur pour évaluer la précision des prédictions. Cette action permet une analyse fine en supportant la pondération des observations, le traitement par groupe (`groupBy`) et l'évaluation sur des partitions de données spécifiques, ce qui en fait un outil flexible pour la validation de modèles dans SAS Viya.