?>
Voir la documentation de annCode
The `annScore` action scores a data table using a pre-trained artificial neural network model. This is a crucial step after training a model with `annTrain`, allowing you to apply the learned patterns to new data to make predictions. The action can generate various outputs, including predicted values, probabilities for classification tasks, and even the values of hidden layer nodes, which can be useful for feature engineering or model interpretation.
The `annTrain` action, part of the `neuralNet` action set, is used to train an artificial neural network (ANN) in SAS Viya. This process involves adjusting the network's weights based on a given dataset to minimize prediction errors. The action supports various architectures like Multi-Layer Perceptrons (MLP), Generalized Linear Models (GLIM), and direct connection models. It offers extensive customization options, including different activation functions, optimization algorithms (like LBFGS and SGD), and data standardization methods, making it a versatile tool for building predictive models.
Die Aktion `annScore` im `neuralNet`-Aktionssatz wird verwendet, um eine Datentabelle unter Verwendung eines zuvor trainierten künstlichen neuronalen Netzwerkmodells zu bewerten. Diese Aktion nimmt ein trainiertes Modell (gespeichert in einer CAS-Tabelle) und eine Eingabetabelle und erzeugt eine Ausgabetabelle, die die vorhergesagten Werte enthält. Sie ist ein wesentlicher Schritt im Machine-Learning-Workflow, um die Leistung eines Modells auf neuen Daten zu bewerten oder Vorhersagen für die Produktion zu generieren.