?>
Voir la documentation de annCode
Die Aktion `neuralNet.annTrain` ist ein leistungsstarkes Werkzeug innerhalb von SAS Viya, das zum Trainieren künstlicher neuronaler Netzwerke (KNN) verwendet wird. Sie ermöglicht es Benutzern, verschiedene Architekturen wie Mehrschicht-Perzeptrone (MLP), verallgemeinerte lineare Modelle (GLIM) und direkte Architekturen zu erstellen und zu optimieren. Diese Aktion ist von grundlegender Bedeutung für Aufgaben des überwachten Lernens, einschließlich Klassifizierung und Regression, und unterstützt auch das unüberwachte Lernen durch Autoencoding zur Dimensionsreduktion. Sie bietet eine breite Palette von anpassbaren Parametern, einschließlich Aktivierungsfunktionen, Optimierungsalgorithmen (z. B. L-BFGS, SGD), Regularisierungstechniken und Methoden zur Behandlung fehlender Werte, was eine feinkörnige Kontrolle über den Trainingsprozess ermöglicht.
The `annScore` action scores a data table using a pre-trained artificial neural network model. This is a crucial step after training a model with `annTrain`, allowing you to apply the learned patterns to new data to make predictions. The action can generate various outputs, including predicted values, probabilities for classification tasks, and even the values of hidden layer nodes, which can be useful for feature engineering or model interpretation.
The annCode action generates SAS DATA step scoring code from a trained artificial neural network model. This allows for the deployment of the model outside of the CAS environment, enabling scoring of new data in traditional SAS environments. The generated code can be saved to a CAS table for further use.