?> Que spécifie le paramètre `modelId` ?... - Aide
QUESTION / RÉPONSE

Que spécifie le paramètre `modelId` ?

0 consultations

Réponse

Spécifie le nom de la variable d'ID de modèle à utiliser lors de la génération de la table évaluée. Par défaut, le nom de la variable est _NN_PredName_ pour les classifications et _NN_Pred_ pour les régressions.
Action technique liée

Voir la documentation de annScore

Voir l'Action
Thématiques

Voir aussi

annTrain
neuralNet

The `annTrain` action, part of the `neuralNet` action set, is used to train an artificial neural network (ANN) in SAS Viya. This process involves adjusting the network's weights based on a given dataset to minimize prediction errors. The action supports various architectures like Multi-Layer Perceptrons (MLP), Generalized Linear Models (GLIM), and direct connection models. It offers extensive customization options, including different activation functions, optimization algorithms (like LBFGS and SGD), and data standardization methods, making it a versatile tool for building predictive models.

annScore
neuralNet

La acción `annScore` del conjunto de acciones `neuralNet` se utiliza para puntuar datos con un modelo de red neuronal artificial previamente entrenado. Esta acción toma un modelo entrenado (desde una tabla CAS) y una tabla de datos de entrada, y genera una tabla de salida con las predicciones. Es una herramienta fundamental en el ciclo de vida del machine learning para aplicar modelos a nuevos datos y evaluar su rendimiento o para la implementación en producción.

annTrain
neuralNet

L'action `annTrain` du jeu d'actions `neuralNet` est un outil puissant pour entraîner des réseaux de neurones artificiels (ANN) dans SAS Viya. Elle permet de construire et d'optimiser des modèles prédictifs pour des tâches de classification et de régression. Cette action supporte diverses architectures, y compris les perceptrons multicouches (MLP) et les modèles linéaires généralisés (GLIM), offrant une flexibilité pour modéliser des relations complexes dans les données. Elle intègre des fonctionnalités avancées telles que la régularisation, le dropout, et plusieurs algorithmes d'optimisation (SGD, L-BFGS, ADAM) pour améliorer la performance et éviter le surajustement. L'action peut également générer du code de scoring SAS pour déployer facilement le modèle entraîné.