?>
Voir la documentation de assess
Die Aktion `assess` im `percentile`-Aktionssatz dient zur Bewertung und zum Vergleich von Vorhersagemodellen. Sie ist besonders nützlich für die Evaluierung von Klassifikations- und Regressionsmodellen, indem sie wichtige Leistungsstatistiken wie ROC-Kurven (Receiver Operating Characteristic), Lift-Charts und Anpassungsstatistiken (z. B. Gini-Koeffizient, KS-Statistik, mittlere quadratische Abweichung) berechnet. Dies ermöglicht es Datenanalysten, die Genauigkeit und Vorhersagekraft ihrer Modelle objektiv zu messen und verschiedene Modelle miteinander zu vergleichen, um das leistungsstärkste auszuwählen.
The `assess` action in the Percentile action set is a powerful tool for evaluating and comparing the performance of predictive models in SAS Viya. It is particularly useful in machine learning workflows to understand how well a model's predictions align with actual outcomes. This action can handle both classification (binary/nominal targets) and regression (interval targets) models. For classification, it computes essential metrics like ROC (Receiver Operating Characteristic) curves, lift charts, and various fit statistics (e.g., accuracy, misclassification rate). For regression, it calculates error metrics like Mean Squared Error (MSE). The action allows for detailed analysis by providing options to bin data, handle missing values, and partition data for validation, making it a cornerstone for robust model assessment.
La acción `assess` del conjunto de acciones `percentile` se utiliza para evaluar y comparar el rendimiento de modelos predictivos. Es especialmente útil para modelos de clasificación, generando métricas como la curva ROC, la tabla de elevación (lift chart) y estadísticas de ajuste para determinar la precisión y eficacia del modelo.