?> Comment l'action gère-t-elle les valeurs manquant... - Aide
QUESTION / RÉPONSE

Comment l'action gère-t-elle les valeurs manquantes dans la variable cible ?

0 consultations

Réponse

Par défaut, les observations avec une valeur cible manquante sont incluses. Pour les exclure, définissez le paramètre `noMissingTarget` sur `True`.
Action technique liée

Voir la documentation de assess

Voir l'Action
Thématiques

Voir aussi

assess
percentile

Die Aktion `assess` im `percentile`-Aktionssatz dient zur Bewertung und zum Vergleich von Vorhersagemodellen. Sie ist besonders nützlich für die Evaluierung von Klassifikations- und Regressionsmodellen, indem sie wichtige Leistungsstatistiken wie ROC-Kurven (Receiver Operating Characteristic), Lift-Charts und Anpassungsstatistiken (z. B. Gini-Koeffizient, KS-Statistik, mittlere quadratische Abweichung) berechnet. Dies ermöglicht es Datenanalysten, die Genauigkeit und Vorhersagekraft ihrer Modelle objektiv zu messen und verschiedene Modelle miteinander zu vergleichen, um das leistungsstärkste auszuwählen.

assess
percentile

The `assess` action in the Percentile action set is a powerful tool for evaluating and comparing the performance of predictive models in SAS Viya. It is particularly useful in machine learning workflows to understand how well a model's predictions align with actual outcomes. This action can handle both classification (binary/nominal targets) and regression (interval targets) models. For classification, it computes essential metrics like ROC (Receiver Operating Characteristic) curves, lift charts, and various fit statistics (e.g., accuracy, misclassification rate). For regression, it calculates error metrics like Mean Squared Error (MSE). The action allows for detailed analysis by providing options to bin data, handle missing values, and partition data for validation, making it a cornerstone for robust model assessment.

assess
percentile

La acción `assess` del conjunto de acciones `percentile` se utiliza para evaluar y comparar el rendimiento de modelos predictivos. Es especialmente útil para modelos de clasificación, generando métricas como la curva ROC, la tabla de elevación (lift chart) y estadísticas de ajuste para determinar la precisión y eficacia del modelo.