?> Est-il possible de générer des tables de sortie ... - Aide
QUESTION / RÉPONSE

Est-il possible de générer des tables de sortie pour les statistiques d'ajustement et les calculs ROC ?

0 consultations

Réponse

Oui, vous pouvez utiliser les paramètres `fitStatOut` pour générer une table avec les statistiques d'ajustement, et `rocOut` pour une table avec les calculs de la courbe ROC.
Action technique liée

Voir la documentation de assess

Voir l'Action
Thématiques

Voir aussi

assess
percentile

The `assess` action in the Percentile action set is a powerful tool for evaluating and comparing the performance of predictive models in SAS Viya. It is particularly useful in machine learning workflows to understand how well a model's predictions align with actual outcomes. This action can handle both classification (binary/nominal targets) and regression (interval targets) models. For classification, it computes essential metrics like ROC (Receiver Operating Characteristic) curves, lift charts, and various fit statistics (e.g., accuracy, misclassification rate). For regression, it calculates error metrics like Mean Squared Error (MSE). The action allows for detailed analysis by providing options to bin data, handle missing values, and partition data for validation, making it a cornerstone for robust model assessment.

boxPlot
percentile

The boxPlot action calculates quantiles, high and low whiskers, and outliers for numeric variables. This action is essential for exploratory data analysis, allowing for a quick understanding of the distribution of data, its central tendency, variability, and the presence of outliers. It is widely used in statistics and data analysis to create box-and-whisker plots.

boxPlot
percentile

Die Aktion `boxPlot` im `percentile`-Aktionssatz ist ein leistungsstarkes Werkzeug zur Durchführung einer robusten univariaten Analyse. Sie berechnet wesentliche deskriptive Statistiken, die für die Erstellung von Boxplots erforderlich sind, einschließlich Quantilen (wie dem Median und den Quartilen), den oberen und unteren Whiskers zur Identifizierung der Datenvariabilität sowie der Erkennung von Ausreißern. Diese Aktion ist besonders nützlich für die explorative Datenanalyse, um die Verteilung, Zentralität und Streuung numerischer Variablen schnell zu visualisieren und zu verstehen, oft gruppiert nach kategorialen Variablen.