?>
Voir la documentation de bartProbit
The bartProbit action fits a probit Bayesian Additive Regression Trees (BART) model to data where the response variable is binary. This is particularly useful for classification problems where the outcome is one of two categories (e.g., yes/no, success/failure, 0/1). The probit model assumes that the binary outcome is the result of an unobserved continuous latent variable following a standard normal distribution. The BART model itself is a non-parametric, ensemble method that combines multiple simple regression trees to create a powerful predictive model, offering a flexible alternative to traditional parametric models.
Crea una tabla en el servidor que contiene los resultados de la puntuación de las observaciones utilizando un modelo ajustado de árboles de regresión aditiva bayesianos (BART). Esta acción es fundamental para aplicar un modelo BART entrenado a nuevos datos para generar predicciones.
The bartScore action scores a data table using a previously fitted Bayesian additive regression trees (BART) model. It generates predicted values, residuals, and confidence limits for each observation in the input data.